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Figure 1: Our system provides four mechanisms to help users create collections from personal media libraries: a keyword-
query interface for generating automatic suggestions (a) and three example-based interaction techniques for iteratively
refining a collection (b–d).

ABSTRACT
To create collections, like music playlists from personal me-
dia libraries, users today typically do one of two things. They
either manually select items one-by-one, which can be time
consuming, or they use an example-based recommendation
system to automatically generate a collection. While such
automatic engines are convenient, they offer the user limited
control over how items are selected. Based on prior research
and our own observations of existing practices, we propose
a semi-automatic interface for creating collections that com-
bines automatic suggestions with manual refinement tools.
Our system includes a keyword query interface for specify-
ing high-level collection preferences (e.g., “some rock, no
Madonna, lots of U2,”) as well as three example-based col-
lection refinement techniques: 1) a suggestion widget for add-
ing new items in-place in the context of the collection; 2) a
mechanism for exploring alternatives for one or more collec-
tion items; and 3) a two-pane linked interface that helps users
browse their libraries based on any selected collection item.
We demonstrate our approach with two applications. SongSe-
lect helps users create music playlists, and PhotoSelect helps
users select photos for sharing. Initial user feedback is posi-
tive and confirms the need for semi-automated tools that give
users control over automatically created collections.
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INTRODUCTION
Personal media libraries are an important part of daily life,
as users amass music, photos, and videos. One common user
task is collecting items from such libraries for a specific pur-
pose. For example, people create music playlists for parties,
exercise, and work. And after a trip, people select photos to
share with friends, family, and colleagues. The challenge in
accomplishing these types of tasks is choosing an appropri-
ate collection (i.e., subset of items) from the hundreds or in
some cases thousands of potential candidates in the user’s
entire library.

There exist two main types of interfaces for creating collec-
tions: manual and automatic. Faceted filtering interfaces [32,
14] have made it easier to manually select items from large
libraries by allowing users to narrow down possibilities and
focus on a specific group of items. For example, to create a
playlist of Michael Jackson songs from the album “Thriller,”
users can sort or filter their entire music library along those
two facets. However, users often want collections that vary
along multiple criteria, such as playlists that include multi-
ple artists and genres [13]. To create more varied playlists,
users must query or filter by individual selection criteria,
such as artist, and manually select songs, for the collection.
Automatic solutions make use of examples [3, 9, 26] or gen-
erate collections by randomly sampling the library. In the
example-based approaches, the user provides one or more ex-
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ample items and a collection is defined automatically based
on item properties, such as genre, artist, year, etc. Although
automatic interfaces can be effective for specifying goals that
are hard to describe in words (e.g. give me more songs with
this kind of melody), they give the user much less control
over the final collection, as the user can only give examples
and can’t express goals, such as “I only want rock music.”

To better understand user needs for working with collec-
tions, we surveyed previous work and carried out contextual-
inquiry interviews with ten people. We found that when work-
ing with photographs and music, users have concrete goals in
mind. For example, a playlist for work should have ambient
music with few words, while a playlist for a party should
have energy but include at most one or two songs from any
specific artist. But, although users have concrete goals for
their collections, they are often satisficing, i.e., they are not
looking for a specific item and will often stop when they
find a “good-enough” photo or song instead of continuing
to search for the “best” item [4]. They also frequently get
sidetracked by specific photos or songs (often those with per-
sonal significance) that inspire them to browse and add other
related items. As a result, creating collections is typically an
iterative process where users successively refine a set of can-
didate items until they are satisfied with the final collection.
During this process, users sometimes change their minds and
end up with a collection that is completely different than the
one they initially had in mind.

Learning about user needs brought us to the realization that
both automatic and manual approaches are necessary. On the
one hand users are satisficing and in many cases are not
too concerned about the specific items in their collections.
This suggests the need for automatic methods that eliminate
the manual effort of selecting individual items. On the other
hand, users want to refine their collections based on the rela-
tionships between items, which indicates the importance of
more user-directed refinement tools. Furthermore, since the
selection criteria for some items are often highly subjective
and deeply personal, it is hard to imagine how any fully au-
tomatic algorithm would be able to reliably create personally
useful collections, even with multiple examples.

We propose a semi-automatic interface for creating collec-
tions that combines freeform text input with example-based
iterative refinement. Users create collections automatically
by defining high-level collection preferences using a textual
query language. For example, the user might create a music
playlist by typing “lots of rock, some U2, no Madonna, 2
hours” (Figure 1a). Our system transforms these preferences
into constraints and then generates an appropriate collection
using an off-the-shelf constraint solver [11]. To help users
refine their collections, we present three different example-
based collection editing techniques: an in-place suggestion
widget for adding related items to the collection based on
metadata from a selected item (Figure 1b); a mechanism for
exploring automatically suggested replacement alternatives
for one or more selected items (Figure 1c); and a linked view
interface that allows users to pivot into their library based on
items in their collection in order to browse for related items
(Figure 1d).

We demonstrate our approach with two applications, one
for creating music playlists (SongSelect), and one for cre-
ating collections of photos for sharing (PhotoSelect). We use
SongSelect to explain our approach and perform user testing,
whereas we use PhotoSelect to demonstrate the adaptation of
our approach to a different domain. Early user feedback on
SongSelect is positive. Users like the text interface and sug-
gestion widget and are happy to employ automated playlist
creation with more user control.

Our work makes the following contributions:

• A textual query language and autocomplete interface for
specifying collection preferences

• A constraint-based technique for automatically generating
collections based on these preferences

• Example-based user interface elements for (1) adding re-
lated items, (2) replacing items with similar alternatives,
and (3) browsing the library relative to one or more se-
lected items

• Design considerations for collection-oriented tools

RELATED WORK
Hansen and Goldbeck [13] pose creating collections as a rec-
ommendation problem, namely “how can we build recom-
mender systems that can suggest collections, not just sin-
gle items?” They propose three key aspects that must be
considered when building systems for recommending collec-
tions: the value of the individual items, co-occurrence inter-
action affects, and order effects including placement and ar-
rangement of items. In this work we focus on the interface
for working with collections and propose a set of interac-
tion techniques that together present the user with a semi-
automated approach to building collections. Our text query
interface allows users to specify co-occurance preferences,
and the constraint solver resolves item interaction effects and
satisfies collection-level goals. Our current design does not
consider order effects.

Unlike today’s faceted- and keyword-search interfaces, which
require the user to specify selection criteria item-by-item in
order to build a collection that varies across facets, early
information retrieval systems returned sets, or collections,
of items using boolean logic queries [29] expressed in lan-
guages, such as Structured Query Language (SQL). Some
modern applications still support boolean logic queries via
form-based interfaces (e.g., iTunes Smart Playlists). Boolean
logic offers richer control over constructing a collection than
simple keyword queries and can enable selecting sets of
items that vary along multiple axes. However, aside from
the difficulty in learning database languages, databases are
optimized for generating collections by applying filters on
an item-by-item basis. This focus on items makes it diffi-
cult to implement constraints that apply to the collection as a
whole. A more natural approach is to treat the problem as a
constraint-satisfaction problem on integer sets, where items
are mapped to integers and constraints of all types can be
specified directly [17]. This is the approach we take, as de-
scribed in the Implementation section.

Our text interface is inspired by sloppy command interfaces
like Inky [20], CoScripter [18], and Chickenfoot [5], but our
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Figure 2: The interface for SongSelect includes a table view with hierarchically sortable columns for browsing the library (a),
a similar view for the current playlist (b) along with some playlist statistics (f), a textfield to enter the user query (c), tabs
for previous query results (d), and a column documenting the inclusion reason for a playlist song (e).

keyword commands are simpler than those required for ex-
ecutable code [19]. With SongSelect users type commands
like “mostly rock, some U2, no Billy Idol, less than 3 hours”
and since most terms in the command contain facet values,
the parsing becomes a matching task. There remain ambi-
guities, however, and we use a scoring scheme very similar
to that of Inky to choose a single, unambiguous interpreta-
tion of the user’s input [20]. Visual layout interfaces offer an
alternative to text-based interfaces. For example, Musicov-
ery [21] uses graph layout to display related music. This type
of interface may be more suitable for exploring unfamiliar
libraries and using relationships to discover new content.

Automatic example-based algorithms for creating collections
continue to be improved [26, 8] and there are a number of
domain-specific approaches [6, 16, 22, 23, 25, 24]. However,
as we discuss in the next section, users want to iteratively
refine collections and certain items can have deep personal
meaning, which makes it challenging to completely automate
the process.

USER NEEDS FOR COLLECTIONS
To motivate our interface design and better understand user
needs for creating collections from personal libraries, we
surveyed prior research on existing practices for creating
playlists and sharing personal photographs [4, 10, 15, 31, 28,
27]. In addition, we conducted ten contextual-inquiry inter-
views to learn more about how users create collections (three
interviews for music playlists and seven for photo sharing).
For each interview, we first asked participants to describe
their song/photo libraries and the tools they use to create col-
lections. Then we asked them to create a collection as they
would normally. The interviewer took notes and photographs
of the participants, their libraries, and collections. Based on
this research, we identify five key observations that inform
the design of digital tools for creating playlists and photo
sets. Although we focus on music and photographs here, we
believe these observations may also apply to working with
other types of collections, such as events, books, etc.

Users have specific goals when creating collections. Col-
lections are often created with respect to events [4], situ-
ations [7], and people [30]. For example, playlists are of-
ten situation-specific (e.g. for driving, entertaining, exercis-

ing), and photo sharing can be person-specific (e.g. photos
for friends, parents, colleagues). Tools should allow users to
describe their preferences and help them understand when a
collection fits or does not fit these goals.

People satisfice when creating collections. Bentley et al. [4]
performed an in-depth analysis of user behavior with pho-
tographs and music and found many similarities in how users
work with personal photograph and music libraries. They
proposed that when working with photographs and music,
users are often satisficing, i.e. they are not looking for a spe-
cific item and will often stop when they find a “good-enough”
photo or song instead of continuing to search for the best
item. They claimed that the reason people satisfice is because
they have too many items to evaluate them all. This satisfic-
ing behavior implies that automation has a place in helping
users create photo and music collections.

Users refine collections iteratively by exploring related
items. Users start with an initial rough collection and then
iteratively grow and shrink the collection as they encounter
new items. For example, when creating a playlist, users may
start by adding many potential songs to the playlist and then
perform a second pass winnowing down the collection and
replacing specific songs to make them fit better with the over-
all collection. They may look for different songs from the
same album or a related song by the same artist. When work-
ing with photos users often look at sequences of photos and
choose one from multiple similar shots. This iterative pro-
cess is not merely a consequence of today’s manual tools. As
users create collections they stumble upon forgotten items
that remind them of past events and lead them to explore re-
lated songs or photos. To support this iterative process, tools
must support users’ needs for browsing along varied dimen-
sions and inter-item relationships.

Adding an item to a collection can be just as much about
the item’s fit in the collection as the item’s individual
quality [13]. For example, parents often want all children
to appear in a set of photographs equally and may include
a specific photograph to satisfy this requirement even if the
photograph is not of high quality. A music playlist may have
a maximum duration, and so a song may be included because
it is just the right length. Tools for creating collections should
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Item Preferences
Quantifiers all, lots of, some, a couple

Prepositions by, from, at
Time before, prior to, after

Set Preferences
Durations < 30 min, about two hours

Counts 20 songs, more than five songs
Sizes less than 250 Mb, 2 gigs

Table 1: Examples of modifiers accepted by Song-
Select in addition to titles, artists, albums and genres,
with selected examples (not an exhaustive list).

make it easy for people to manage these inter-item dependen-
cies and overall collection requirements.

Collections that are shared with others can be highly per-
sonal [31, 28] and specialized. They often tell stories and in-
clude items that may seem unrelated to the casual observer.
For example, music playlists are often created as gifts and
include songs that are meaningful to the person giving or re-
ceiving the gift, such as the classical “mixed tape.” Similarly,
photos often tell personal stories of travels and events. It is
hard to imagine that a fully automatic tool for creating col-
lections could incorporate all of the subjective criteria that
may be part of selecting items. Tools for collections need to
be flexible to shifting user concerns and preferences.

USER INTERFACE
We first describe our interface design in the context of the
music playlist application, SongSelect, and then discuss how
we adapt this design to photo collections within PhotoSelect.

SongSelect
SongSelect has three areas, a text box at the top for spec-
ifying queries and two tabbed panes (Figure 2). The left
pane displays the user’s music library and query history as
tabs (Figure 2a), while the right pane displays the user’s
playlist (Figure 2b). The user can start making a playlist by
selecting songs from the library and dragging them over to
the playlist, as is common in many music applications. Or
the user may ask SongSelect for suggestions by specifying
his preferences with keyword queries, such as “lots of rock,
some U2, no Madonna.” Given a user query (Figure 2c),
SongSelect creates a playlist and stores it as a tab next to
the user library in the left pane (Figure 2d). Note that these
keyword queries are closer in flavor to the early set retrieval
interfaces than today’s keyword search interfaces, which re-
trieve lists of ranked documents. Also, a SongSelect playlist
is analogous to a database view, although some user pref-
erences can have relationships making them more complex
to satisfy with traditional database query languages, such as
“only one song per artist.” We chose a freeform text interface
over a traditional form-based GUI with checkboxes and slid-
ers as textual queries allow users to specify only the relevant
keywords without being overwhelmed by all the available
options. For example, a music library with hundreds artists
could result in a GUI with hundreds of checkboxes.

To support interactive refinement, we designed with exam-
ples in mind. SongSelect supports three example-based in-

teraction refinement techniques. First, to better access the
user’s intent behind an example, we present a new widget,
the suggestion widget, which allows users to flexibly add new
songs to the playlist using song metadata, such as artist, al-
bum or genre. For example, if the user wants to add five more
pop songs to his playlist, he can drag on “Pop” in the genre
column (Figure 3). Second, the user can select one or more
items in a playlist and look for alternatives by simply press-
ing the keyboard arrow keys. The selected songs are replaced
in-place with alternatives derived from the user queries. Fi-
nally, to support library browsing as part of collection refine-
ment, we link the library view to the playlist view and allow
users to use any song as a pivot for finding related songs in
the library (Figure 4).

Keyword queries
Since users are familiar with keyword search interfaces, which
can take any string as input, we designed the playlist query
text input interface to be as flexible as possible. Users can
type as much or as little as they like. SongSelect will do its
best to infer the user’s intent and return a reasonable playlist.
We define a user query as a list of criteria, such as “some
rock, a lot of U2, no Alternative,” that is specified as comma-
separated phrases. Each phrase corresponds to a user crite-
rion. Phrases can be as simple as the name of an artist, album,
genre, or song. For more precision users can add modifiers,
such as “mostly,” “some,” “a lot,” “no.” When a modifier is
not specified, we assume the most general “some” modifier.
Complex phrases include two or more facet values, such as
“rock by U2” and “Michael Jackson before 1990.” Phrases
can also describe criteria about the playlist length, such as
“max 2 hours, no more than 40 songs.” Table 1 shows exam-
ples of the types of the modifiers SongSelect supports. If a
phrase fails to parse properly, SongSelect alerts the user and
asks him to correct or remove the phrase.

To aid the user in making queries, we designed an autocom-
plete widget that recognizes phrases and provides informa-
tion about items in the library (see Figure 1a). The autocom-
plete widget includes genres, artists, albums, and songs. It
lists the number of available items next to each autocomplete
item. We found this critical for setting user expectations. If
they only have one hip hop song, they should not expect to
get a whole playlist of hip hop songs. Additionally songs and
album entries include the artist name.

Finally, user queries are stored as tabs in the left pane (Fig-
ure 2d) so that user may go back to previous queries. This
is useful as a history mechanism, but it also enables users to
merge multiple playlists together or add new songs through
keyword queries.

Suggestion widget
The suggestion widget (Figure 3) allows users to grow a col-
lection in-place, removing the need to move back and forth
between the library and the collection. The suggestion wid-
get is visible to the user as a thumb and is available for all
cells that are associated with more than one item. Since song
names are typically unique, cells with song names do not in-
clude a suggestion widget, while an artist, album, and genre
are not unique and can therefore be used to add more items.
The user clicks on the thumb and drags down to add songs.
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Figure 3: The suggestion widget invoked on the facet
“Genre” with value “Alternative,” the progressive sug-
gestions as the user expands the widget.

SongSelect limits the size of the expansion with the number
of available songs.

The suggestion widget presents a novel way to add items to
collections and may be used independently from the keyword
interface. It allows users to create playlists by example, but
also to direct how that example is used.

Exploring alternatives
The user can browse the alternatives for a music playlist by
selecting all or parts of the playlist and cycling through sug-
gestions with the left and right arrow keys. Alternatives are
generated through the phrases specified by the user. So if
the user selects a few songs that were suggested because he
asked for “some rock,” he will see other rock songs that are
not already in the playlist. If the user selects a song that was
added to the playlist manually, through drag and drop, then
SongSelect defaults to using the artist name and gives alter-
native songs by that artist. Songs that are added to the playlist
through the suggestion widget are given a virtual phrase that
corresponds to the basis for the suggestion. For example, if
the user dragged the “rock” suggestion widget, the songs that
are added are assigned the “rock” phrase.

Browsing libraries with linked views
Since users want to browse their libraries when creating col-
lections, we designed a two-panel interface with the library
on the left and the playlist on the right. The two panels are
linked and the library is sorted and scrolled dynamically with
respect to the playlist. When the user clicks on any song in
the playlist, the library panel is sorted and scrolled to the
song the user selected (Figure 4). The sorting is based on
the column the user clicked. If the user clicked on the name
of the song, the library is sorted by song name. For better
orientation, we support secondary and tertiary sorting. If the
user clicked on the genre of a song, the library is sorted first
by genre, then by artist, and then by song. We specify de-
fault sorting rules for any metadata dimensions. Since not
all song metadata is always visible, SongSelect includes a
context menu that allows users to pivot on any of the meta-
data associated with a song, such as rating, number of times
played, year released, etc.

Figure 4: Selecting a song by The Postal Service in
the playlist sorts the library by artist and scrolls to show
other related songs.

Rich feedback
Providing effective feedback was a key design goal, since
users can be confused by automatic suggestions. SongSelect
offers a number of rich feedback features. First, the autocom-
plete widget sets user expectations, so that if a library has
only one rock song, the user should not expect to create a
playlist of only rock songs (Figure 1a). Second, the playlist
includes a column, the “source” column, that describes why
a song is in the playlist (Figure 2e). It lists a phrase, the
facet value that was used with the suggestion widget, “drag-
n-drop” for manually added items, or “auto fill” for items
that were added to satisfy a length or duration criteria. Each
playlist tab displays the number of songs, duration, and size
of the playlist (Figure 2f). The grid columns also list the
number of unique items in that column, so that the user can
quickly evaluate the playlist. For example, Figure 2 shows a
playlist that includes 13 songs from 12 artists and 12 differ-
ent albums.

Since users are often concerned about how the items in a
collection relate to one another, we added brushing to the
playlist view. As the user moves the mouse over the playlist
related items are highlighted. When the user puts the mouse
over an artist name, such as “Cake,” all “Cake” songs are
highlighted. When the user moves the mouse over a genre,
such as “Rock,” all rock songs are highlighted. This type
of feedback allows users to assess the playlist and decide
whether they need to balance the collection with new songs.

PhotoSelect
To explore how these interaction techniques may be adapted
to new domains, we implemented PhotoSelect, which allows
users to create collections of photos from their photo library
(see Figure 5a). Users often create collections of photos when
they want to share photos with their friends, families, and
colleagues. Similarly to SongSelect, PhotoSelect has a search
box at the top with two panes. The library appears on the left
and the collection appears on the right. To create a collec-
tion users can type queries such as, “mostly landscapes, none
from the hotel, a few group shots,” or they can scroll through
their library and drag and drop photos into the collection.
As with songs, users can use the suggestion widget to add
new photos, scroll through alternatives, and dynamically sort
and scroll their photo library. Since photos have an inherent
time-based ordering, which is preferred by users [12], we se-
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Figure 5: (a) The interface for PhotoSelect includes a text box for specifying queries (top), a browsing pane for browsing
the library (left), and the user’s current collection (right). Suggestion widget tabs and tooltips for people (b), places (c),
and time (d), respectively.

lect time as the default sorting criteria. PhotoSelect allows
users to make use of any available metadata including people
and places. Although people and place metadata is not part
of all personal photo collections today, with advances in GPS
technology and face recognition, we expect this metadata to
become a ubiquitous part of personal photo collections.

There are some key differences between PhotoSelect and
SongSelect. First, photographs are displayed in a grid instead
of a list, which means that metadata incorporated with an
image is not readily visible. Since the suggestion widget in
SongSelect uses visible metadata, we redesigned it for Pho-
toSelect (Figure 5b,c,d). When the user hovers over a photo-
graph, three thumbs appear. The thumbs correspond to peo-
ple, places, and time. The user can add more photos based
on the people, place, or time of any photo in the collection.
In SongSelect we implemented the suggestion widget as a
tray that appears on top of the playlist. One limitation of this
approach is that as the user expands the tray and adds new
songs, he hides some of the songs already in the playlist.
In PhotoSelect the suggestion widget expands in place and
moves the items following the selected item. This approach
does not hide any elements but can cause extra shuffling,
which may be distracting to the user.

We added additional keywords to our parser in order to sup-
port domain-specific keywords. For example, users may want
to say “mostly landscapes” or “a few group shots.” We expect
that every new domain will have specialized keywords.

IMPLEMENTATION
In order to support different domains, we employ a client-
server model, where the client contains domain knowledge
and the server is a generic domain-independent constraint
solver. The client transforms user input into a set of con-
straints using its domain knowledge, passes those constraints

to the server, which then returns solutions to the constraint
problem. The advantage of translating domain-specific user
constraints into a domain-independent form is that we can
use powerful off-the-shelf solvers for a variety of applica-
tions. The server is implemented in C++ as a web server
and solves constraint problems using the Gecode constraint-
solving toolkit [11]. For rapid prototyping and iteration, the
user interfaces are written in ActionScript using Adobe Flex
3 [2] user interface framework and the Adobe Integrated
Runtime (AIR) application framework [1].

Translating queries into constraints
As described in the user interface section, queries are com-
prised of a series of comma-delimited phrases, each of which
produce a constraint on the items in the solution set.

Item constraints The most common type of constraint spec-
ifies a class of items in the library and the size or pro-
portion of that class in the solution set. For example, “lots
of Madonna” specifies that the class of songs by Madonna
should be 50% of the solution set. And “no rock by U2 less
than 3 minutes” translates into zero songs that contain “U2”
as artist and “rock” as genre and are less than 3 minutes long.
Table 2 lists how we translate different types of quantifiers.
Users could also directly specify proportions or number of
items. In our pilot study we found that users often didn’t
know exactly how many items they wanted in their collec-
tion and preferred using more vague query words.

Before passing the constraints to the server, the client goes
through all constraints to normalize the proportions and check
to see if any constraint can be trivially rejected. So, for ex-
ample if the user asked for “some U2” but he only has two
U2 songs, the constraint is modified to specify two U2 songs,
instead of 25% of what could be a 2 hour collection. All pro-
portions are normalized to add up to 100%. This ensures that
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Quantifier Quantity
all, everything, every, 100%
most, mostly, most 75%
lots, lots of/from/at, 50%
some, some of/from/at, 25%
few, a few, a little 10%
couple, a couple, 2 items
one, one of/from/at, 1 item
none, nothing of/from/at, 0 items

Table 2: We transform quantifiers into quantities in
order to issue constraints.

the constraint solver does not return items the user did not re-
quest. For example, the query “mostly rock, some U2, some
Madonna, no Michael Jackson, a few Billy Idol” becomes
55% rock, 19% U2, 19% Madonna, and 7% Billy Idol for
our sample library.

Many simple queries can be fully or partially satisfied with-
out querying the server, such as single-phrase queries (“some
rock”) and phrases that include or exclude items (“no U2”).
However, most non-trivial queries do require the services of
the server, such as queries whose phrases’ domains overlap
(“some Madonna, a few pop”), or phrases that specify a con-
straint on the set as a whole (“less than 30 minutes”).

Set constraints Apart from constraining classes of items,
the user can set constraints on the solution set as a whole,
such as “some rock, < 90 min”. If a phrase only includes a
duration, song count or size, we assume that it applies to the
entire set. To construct the constraint we sum the individual
item values, for example, the phrase “< 90 min” translates
to “the sum of song lengths < 90 min.” If no other set con-
straints are specified, SongSelect and PhotoSelect default to
a length of 20 songs or photos.

Parsing The parser processes the user query after every
keystroke and populates the auto-complete widget. The lan-
guage for describing collection preferences is inherently am-
biguous. Does the word “all” refer to the quantifier from Ta-
ble 1, or does it refer to a (possibly-partial) title, album, artist
or genre? What if the library contains both an artist and an
album named “all?” We make use of a number of heuris-
tics to disambiguate user queries but these heuristics can be
tuned with user preferences. First, we use a non-deterministic
parser which generates all possible interpretations of the
user’s query and applies a simple scoring function to rank
the interpretations. The autocomplete widget uses this rank-
ing in its display. For each parser token like title or duration,
the scoring function assigns a numeric score based on the se-
mantics of the domain. The score of the entire phrase is sim-
ply the sum of scores for each token. In the music domain, we
score tokens in the following decreasing order: genre, artist,
album, title, anything else. The interpretation with the highest
summed score wins. In the case of a tie between two inter-
pretations, the most general interpretation wins. We choose
this ordering (general to specific) because we expect the user
to query by describing the general properties of the solution
set, not to pick out individual items. In the case where “all”
matches both an album and an artist, the parser favors the
artist, which results in more songs in the final solution set. In

the photo domain, there is much less metadata, so ties are not
very common. The parser scores people higher than places
and places higher than other user-specified tags.

Implicit constraints
When users create collections, they have some implicit crite-
ria that apply to most if not all collections. One such criterion
is that they want their collections to be diverse (e.g. playlists
should include multiple artists and photos collections should
include photos from the entire library, not just a small sub-
set). To create diverse collections, we configured the sever
to explore the subspaces of constraint-matching sets at ran-
dom, ensuring that a query of “some rock” would not return
a playlist with only songs from the first rock artist in the li-
brary, for example. While this simple heuristic works fairly
well, it does not ensure diversity. In the future, we plan to
explore different strategies for ensuring diversity. Photo col-
lections, for example, often include bursts of photos taken
at approximately the same time when users captured several
images in an effort to get “the best” one. It seems likely that
users would only want one photo from such events and this
could be encoded as an implicit constraint. Photo and mu-
sic quality could also be part of the implicit criteria used to
generate a collection.

Limitations
Perhaps the biggest limitation of our approach is that the con-
straint solver sometimes fails to find a solution and provides
no feedback for the reasons of this failure. The SongSelect
and PhotoSelect applications pre-process the query in order
to pass along constraints that are satisfiable, but sometimes
slight changes to the query can yield a better result. To im-
prove our approach, we plan to explore techniques that allow
for soft and hard constraints, and fail more gracefully. Since
users are satisficing, returning a “good enough” collection is
generally better than returning no result at all.

Our approach also does not consider ordering effects within
a collection, but such preferences could be expressed as con-
straints in our current implementation. For example, the user
cannot query for a playlist that starts with rock songs and
ends with pop songs. An interesting future direction is to ex-
plore adding weights to constraints so that users can express
queries such as, “prefer rock over pop music” or “pick out-
door scenes over indoor shots”.

USER FEEDBACK
We report on user feedback from a pilot study of SongSelect
with four participants. We plan a comparative evaluation with
manual and automated approaches in the future. The study
lasted an hour and included an introduction into the partici-
pant’s existing music collection and playlists, a training task
with SongSelect, and a playlist-creation task of their choice.
The participants were between 24 and 40 years of age, two
male and two female. All of them use Apple’s iTunes soft-
ware and have over 5000 songs in their libraries (one partic-
ipant has over 70,000 songs). All of them reported making
playlists, but their playlists had very different characteristics,
and they varied in the amount of time they spent making
them. Some made playlists as a way to put songs on their
mobile devices, while others made themed playlists for fun
or as part of an exercise class. Two of the participants were
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very concerned with the order of songs in their playlist, while
the other two didn’t care about the order at all (to the extent
of deliberately shuffling the order of their playlist). All of
them reported listening to music every day. All of the par-
ticipants were aware of iTunes’ Genius playlist creation tool,
but perceived it to be biased towards popular music and not
applicable to their personal libraries. Two participants men-
tioned using Pandora, an online streaming music service that
creates streams of music similar to examples provided by the
user. Two participants explicitly said that they enjoyed mak-
ing playlists and enjoyed the results, but found the process
tedious and wished that there were faster ways of generating
quality playlists.

Overall, the participants reacted positively to SongSelect.
Three commented that they liked the automated-but-malleable
nature of SongSelect playlists. All four commented that they
would like more automated tools for creating playlists but
that they were concerned with the lack of control with exist-
ing systems for automatically creating playlists.

When asked about their favorite part of SongSelect, all par-
ticipants agreed that the in-place suggestion widget was a
great way to add new items and that being able to look at the
library side-by-side with the playlist was useful. Two of the
participants requested a modal suggestion widget so that they
could add just the songs they wanted and not all suggestions.
Three participants liked the ability to look through alterna-
tive item suggestions with the arrow keys but requested more
control. Two participants wanted to be able to change the way
SongSelect generated alternatives. One wanted to constrain
the suggestions to a specific artist, while another wanted to
change the genre of the songs.

All of the participants were able to use the text-based inter-
face to generate an initial playlist. One participant said he
preferred SongSelect’s interface to iTunes’ SmartAlbums in-
terface because he didn’t have to move the mouse, he could
just type. All of the participants wanted to be able to use
more metadata dimensions in the text box, in particular the
album year, the dates the songs were added, and other, more
subjective dimensions such as the “energy” of a song. Three
participants remarked on the inaccuracy of the genre meta-
data in their libraries, and noted that the quality of the query
results depended on the accuracy of the metadata.

Of the two participants who struggled with the text interface,
one was confused by the results returned by the constraint
server and felt that SongSelect was hiding things from her.
This was likely due to a software bug and could be improved.
The other participant thought of SongSelect’s interface as a
search interface not as a playlist creation interface and as a re-
sult was confused when SongSelect produced only 20 songs
and not every matching song. This may be a more serious
issue and one that requires careful design. By converting the
search box into a query command interface SongSelect takes
away the ability to search the library. This could be reme-
died, by explicitly including a Find feature that could be trig-
gered with common key commands (Ctrl-F). However this
confusion may speak to a larger problem: that users have ex-
pectations of what appear to be search text boxes. That is,
queries in text boxes are for searching for specific items, not

Collection
permanence permanent ephemeral

Collection
order ordered unordered

Familiarity
with library personal public 

User time
investment minutes days

Figure 6: Design space for tasks with collections.
SongSelect and PhotoSelect are designed for quickly
creating ephemeral collections from personal libraries
(shown in grey). SongSelect does allow users to man-
ually order songs in the playlist but order is not used in
generating playlists.

entire collections of items with interdependencies. This type
of interface may require more training and a longer term field
study to evaluate its effectiveness.

DISCUSSION: DESIGN CONSIDERATIONS
Creating playlists and sharing photos are just two situations
among many in which users work with collections. For ex-
ample, when planning a weekend trip, users are often faced
with putting together an itinerary with many different activi-
ties such as meeting friends, visiting museums, and attending
events. When selecting investments, users are often trying to
pick a good mix of stocks while satisfying some high-level
objectives. When remodeling a house there are many deci-
sions that must be done in concert. For example, the choice
of cabinets affects the counters and appliances.

Although in all of these situations, users iteratively create
collections while managing multiple constraints, it is impor-
tant to consider their differences. We propose a design space
for discussing the differences and similarities between these
problems, illustrated in Figure 6.

User time investment. Selecting stocks is a very different
kind of activity than creating a music playlist. Although users
are trying to make collections in both situations, the high cost
of making a bad investment decision means that users are
willing to spend days working on their collection. In con-
trast, creating a music playlist usually takes an hour or two,
and some users are only willing to spend minutes on it. With
SongSelect and PhotoSelect we designed for shorter tasks,
although some of our participants mentioned that they would
use SongSelect to edit playlists over time. Automated tools
can shorten the time it takes to complete a task, thereby low-
ering the barrier to entry. In our interviews many users ex-
pressed wanting to create more playlists but being held back
by the time investment.

Familiarity. Users approach personal libraries differently than
less familiar public libraries, because they know what is
available. In the two domains we consider, users can be ex-
pected to be familiar with the kinds of metadata available,
such as artist names, genres, places, etc. Both SongSelect and
PhotoSelect were designed for use with personal libraries,
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but we found that one participant acquired music at such a
high rate (10 new albums per month) that their libraries were
a mix between very familiar and unfamiliar songs. Although
we believe that the interaction techniques we present in this
paper could apply to unfamiliar content, further investigation
is necessary.

Collection permanence. Users create collections for differ-
ent reasons. For example, music playlists created for parties
are often transient and get dated quickly. Investment and re-
modeling decisions, on the other hand, tend to be more per-
manent. SongSelect and PhotoSelect’s designs focus on the
collection creation aspects rather than longer-term mainte-
nance aspects. We suspect that long-lived collections may re-
quire additional tools that help users track how a collection
changes over time.

Item order. For many collections the order of items is im-
portant. Although SongSelect lets users manually order items,
it does not consider ordering effects when it generates collec-
tions. We expected this to be a common complaint among our
participants, however we found that many listen to playlists
in shuffle mode.

CONCLUSIONS AND FUTURE WORK
We present a semi-automatic interface for creating collec-
tions of items from personal media libraries. Our interface
combines free-form text input with example-based refine-
ment. We present a keyword query interface that lets users
create collections by specifying collection characteristics and
propose three different example-based refinement techniques.
First, we introduce the suggestion widget for in-place addi-
tion of new collection items that allows the user to flexibly
add content using example metadata. Second, we allow users
to automatically scan through alternatives for one or more
collection items while retaining any user-specified collection
characteristics. Finally, we use a two-pane linked interface
to let users dynamically sort and scroll their libraries relative
to a collection item. We demonstrate our approach in two
applications—a music playlist creation application, Song-
Select, and a photo set selection application, PhotoSelect—
but we believe these interaction techniques are applicable to
other domains. Initial user feedback confirms the need for
semi-automated tools that let users direct automatic collec-
tion creation.

In future work, we plan to explore working with multiple
collections. For example, when users create photo books or
calendars, they look at previous photo collections they may
have created and shared. Today’s interfaces do not let users
compare collections and easily see which items are included
in multiple collections. More generally, today’s folder-based
interfaces assume and enforce that items are only present
in one location. There are many situations in which this is
not optimal, and users make many copies of the same item,
which are hard to keep synchronized.

SongSelect and PhotoSelect allow users to create collections
from their personal libraries, but users are often looking to
make collections of non-personal content, like when they
build travel itineraries, select stocks, or select furniture for
their house remodel. Non-personal content is often scattered

throughout multiple websites and part of the user’s task is to
find all necessary information. A tool for helping users build
non-personal collections will have to be able to manage and
integrate metadata from multiple locations.
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